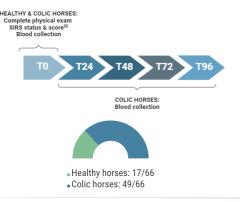
EVALUATION OF SYMMETRIC (SDMA) AND ASYMMETRIC (ADMA) DIMETHYLARGININES IN HEALTHY AND IN SYSTEMIC INFLAMMATORY **RESPONSE SYNDROME (SIRS) NEGATIVE OR POSITIVE COLIC HORSES**

Bindi Francesca¹, Nocera Irene², Vallesi Giorgia¹, Meucci Valentina¹, Bonelli Francesca², Spadari Alessandro³, Rinnovati Riccardo³, Sgorbini Micaela¹


INTRODUCTION

✓ Increased levels of SDMA and ADMA were correlated to severe sepsis or septic shock in human patients ^[1,2]

AIMS

- To compare plasmatic concentrations of ADMA/SDMA in healthy (H) vs. SIRS-positive and negative colic horses over-time
- To evaluate the correlation between ADMA/SDMA and SIRS score ad admission to the hospital (T0)

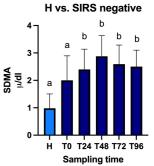
MATERIALS AND METHODS

- SDMA/ADMA analytical methods Plasmatic SDMA and ADMA were determined using high performance liquid
- chromatography with fluorescence detection, as previously described [4]

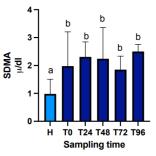
Statistical analysis

- Distribution → Komolgorov-Smirnov test
- Differences between H vs. colic horses over-time → Kruskal-Wallis and Dunn's multiple comparisons test
- Correlation between ADMA/SDMA and SIRS score at T0 → Spearman test

RESULTS


	то			T24		T48		T72		Т96	
SDMA	Healthy (n=17)	SIRS- negative (n=25)	SIRS- positive (n=18)	SIRS- negative (n=18)	SIRS- positive (n=14)	SIRS- negative (n=14)	SIRS- positive (n=10)	SIRS- negative (n=13)	SIRS- positive (n=9)	SIRS- negative (n=11)	SIRS- positive (n=9)
Med	0.98	2.00	1.98	2.40	2.31	2.88	2.24	2.59	1.85	2.50	2.50
25th	0.90	1.66	1.22	1.89	1.67	2.52	1.54	1.80	1.51	1.45	1.43
75th	1.51	2.90	3.20	3.14	2.85	3.63	3.36	3.29	2.34	3.10	2.75

					T24		T48		T72		T96	
ADMA	Healthy (n=17)	SIRS- negative (n=25)	SIRS- positive (n=18)	SIRS- negative (n=18)	SIRS- positive (n=14)	SIRS- negative (n=14)	SIRS- positive (n=10)	SIRS- negative (n=13)	SIRS- positive (n=9)	SIRS- negative (n=11)	SIRS- positive (n=9)	
Med	11.90	12.54	13.75	12.85	12.98	13.82	15.25	14.15	13.61	13.60	12.30	
25th	10.28	11.24	10.54	11.12	10.50	11.83	12.75	11.78	12.39	9.90	11.70	
75th	14.28	17.97	20.20	17.45	17.25	16.40	20.19	16.92	16.33	15.60	15.73	


- Differences found (p<0.0001) for SDMA between H vs. SIRS-negative (T24-T96) or SIRS-positive (T0-T96) horses
- No differences found for ADMA (p=0.1487)
- No correlation observed between SIRS score and SDMA at T0 (p=0.584)

DISCUSSION & CLINICAL RELEVANCE

- ✓ SDMA might be a promising biomarker in colic horses
- ✓ Further research is needed to determine the diagnostic and prognostic role of SDMA

H vs. SIRS positive

Winkler MS et al (2018). Symm rical (SDMA) and Asy Levels as Combined Risk Markers Grosspis Survival. Crit Care, 22(1): 216 et al (2017). Prognostic Value and Development of a Scoring Syste tatory Response Syndrome, JVIM, 31(2):582-592 2. JORD, JVIG, Casheric J. ing Syster

ECEI

16th ECEIM Congress 2023 27 - 28 October, Lyon, France

Veterinary Teaching Hospital "M. Modenato", Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy ² Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy ³ Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy

Corresponding author: Dr. Francesca Bindi, DVM Veterinary Teaching Hospital "M. Modenato" Via Livornese, 786, 56122, San Piero A Grado (PI), Italy Phone: +39 388 1669119 E-mail: francesca.bindi@phd.unipi.it